41 research outputs found

    Giving in Illinois, 2015

    Get PDF
    Illinois is home to over 5,200 grantmaking foundations spanning all typesā€”independent or family, corporate, community, and operatingā€”sizes, and issue areas. The community includes many foundations that only give locally or within the state, as well as those that fund nationally and even internationally. The following analysis provides an overview of the scale and composition of the Illinois foundation community and an examination of how Illinois foundations have fared relative to U.S. foundations in general over the past decade

    Giving in Illinois 2016

    Get PDF
    Illinois is home to over 5,200 grantmaking foundations spanning all typesā€”independent or family, corporate, community, and operatingā€”sizes, and issue areas. The community includes many foundations that only give locally or within the state, as well as those that fund nationally and even internationally. The following analysis provides an overview of the scale and composition of the Illinois foundation community and an examination of how Illinois foundations have fared relative to U.S. foundations in general over the past decade

    DISCOVER-AQ: An Overview and Initial Comparisons of NO2 with OMI Observations

    Get PDF
    The first deployment of the Earth Venture -1 DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project was conducted during July 2011 in the Baltimore-Washington region. Two aircraft (a P-3B for in-situ sampling and a King Air for remote sensing) were used along with an extensive array of surface-based in-situ and remote sensing instrumentation. Fourteen flight days were accomplished by both aircraft and over 250 profiles of trace gases and aerosols were performed by the P-3B over surface air quality monitoring stations, which were specially outfitted with sunphotometers and Pandora UV/Vis spectrometers. The King Air flew with the High Spectral Resolution Lidar for aerosols and the ACAM UV/Vis spectrometer for trace gases. This suite of observations allows linkage of surface air quality with the vertical distributions of gases and aerosols, with remotely-sensed column amounts observed from the surface and from the King Air, and with satellite observations from Aura (OMI and TES), GOME-2, MODIS and GOES. The DISCOVER-AQ data will allow determination of under what conditions satellite retrievals are indicative of surface air quality, and they will be useful in planning new satellites. In addition to an overview of the project, a preliminary comparison of tropospheric column NO2 densities from the integration of in-situ P-3B observations, from the Pandoras and ACAM, and from the new Goddard OMI NO2 algorithm will be presented

    Bromine measurements in ozone depleted air over the Arctic Ocean

    Get PDF
    In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL). Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Fast (1 s) and sensitive (detection limits at the low pptv level) measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS) instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200ā€“500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere

    Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS

    Get PDF
    A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring time high latitude troposphere based on aircraft and satellite measurements of bromine oxide (BrO) and related species. The NASA DC-8 aircraft utilized a chemical ionization mass spectrometer (CIMS) to measure BrO and a mist chamber (MC) to measure soluble bromide. We have determined that the MC detection efficiency to molecular bromine (Br2), hypobromous acid (HOBr), bromine oxide (BrO), and hydrogen bromide (HBr) as soluble bromide (Brāˆ’) was 0.9Ā±0.1, 1.06+0.30/āˆ’0.35, 0.4Ā±0.1, and 0.95Ā±0.1, respectively. These efficiency factors were used to estimate soluble bromide levels along the DC-8 flight track of 17 April 2008 from photochemical calculations constrained to in situ BrO measured by CIMS. During this flight, the highest levels of soluble bromide and BrO were observed and atmospheric conditions were ideal for the space-borne observation of BrO. The good agreement (R2 = 0.76; slope = 0.95; intercept = āˆ’3.4 pmol molāˆ’1) between modeled and observed soluble bromide, when BrO was above detection limit (\u3e2 pmol molāˆ’1) under unpolluted conditions (NOmolāˆ’1), indicates that the CIMS BrO measurements were consistent with the MC soluble bromide and that a well characterized MC can be used to derive mixing ratios of some reactive bromine compounds. Tropospheric BrO vertical column densities (BrOVCD) derived from CIMS BrO observations compare well with BrOTROPVCD from OMI on 17 April 2008

    Observations of APAN during TexAQS 2000

    Get PDF
    Measurements of peroxycarboxylic nitric anhydrides (PANs) made in Houston, Texas during TexAQS (Texas Air Quality Study) 2000 showed a relatively abundant PAN compound that had not been identified in previous studies in North America [cf. Williams et al., 2000]. This compound was hypothesized to be peroxyacrylic nitric anhydride { CH2=CHC(O)OONO2, APAN} based on the work of Tanimoto and Akimoto, [2001]. APAN was synthesized and characterized on one of the two GC systems used to make those measurements, subsequent to the TexAQS 2000 field study, confirming that APAN was observed during TexAQS 2000, both on the ground and in airborne measurements. Mixing ratios of APAN were estimated from the response of the system to PAN and PPN and ranged up to 502 pptv, which was 30% of PAN. High APAN values were associated with the precursor species 1,3-butadiene and acrolein, which had local petrochemical sources. The presence of APAN at these unprecedented levels demonstrates the impact of these reactive VOC species, and may have associated health effects

    Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations

    Get PDF
    Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, Ī³(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3āˆ’) and nitryl chloride (ClNO2). We report the firstā€ever derivations of Ī³(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual Ī³(N2O5) values with a median value of 0.0143 and range of 2 Ɨ 10āˆ’5 to 0.1751. WINTER Ī³(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict Ī³(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of Ī³(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first fieldā€based, empirical parameterization of Ī³(N2O5), fit to WINTER data, based on the functional form of previous parameterizations
    corecore